§ 23.443 - (1) Steady slip conditions; - (2) Uncoordinated rolls from steep banks; or - (3) Sudden failure of the critical engine with delayed corrective action. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13090, Aug. 13, 1969; Amdt. 23–14, 38 FR 31821, Nov. 19, 1973; Amdt. 23–28, 47 FR 13315, Mar. 29, 1982; Amdt. 23–42, 56 FR 353, Jan. 3, 1991; Amdt. 23–48, 61 FR 5145, Feb. 9, 1996] #### §23.443 Gust loads. - (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V_{C_c} lateral gusts of the values prescribed for V_C in §23.333(c). - (b) In addition, for commuter category airplanes, the airplane is assumed to encounter derived gusts normal to the plane of symmetry while in unaccelerated flight at V_B , V_C , V_D , and V_F . The derived gusts and airplane speeds corresponding to these conditions, as determined by §§ 23.341 and 23.345, must be investigated. The shape of the gust must be as specified in §23.333(c)(2)(i). - (c) In the absence of a more rational analysis, the gust load must be computed as follows: $$L_{vt} = \frac{K_{gt} \ U_{de} \ V \ a_{vt} \ S_{vt}}{498}$$ Where- L_{vt} =Vertical surface loads (lbs.); $$k_{gt} = \frac{0.88 \,\mu_{gt}}{5.3 + \mu_{gt}} = \text{gust alleviation factor};$$ $$\mu_{\text{gt}} = \frac{2W}{\rho c_{\text{t}} g a_{\text{vt}} S_{\text{vt}}} \frac{K^2}{l_{\text{vt}}} = \text{lateral mass ratio};$$ U_{de} =Derived gust velocity (f.p.s.); ρ=Air density (slugs/cu.ft.); W=the applicable weight of the airplane in the particular load case (lbs.); S_{vt}=Area of vertical surface (ft.2); č≤t=Mean geometric chord of vertical surface (ft)· a_{vt} =Lift curve slope of vertical surface (per radian); K=Radius of gyration in yaw (ft.); $l_{\nu\tau}$ =Distance from airplane c.g. to lift center of vertical surface (ft.); g=Acceleration due to gravity (ft./sec.2); and V=Equivalent airspeed (knots). [Amdt. 23–7, 34 FR 13090, Aug. 13, 1969, as amended by Amdt. 23–34, 52 FR 1830, Jan. 15, 1987; 52 FR 7262, Mar. 9, 1987; Amdt. 23–24, 52 FR 34745, Sept. 14, 1987; Amdt. 23–42, 56 FR 353, Jan. 3, 1991; Amdt. 23–48, 61 FR 5147, Feb. 9, 1996] #### § 23.445 Outboard fins or winglets. - (a) If outboard fins or winglets are included on the horizontal surfaces or wings, the horizontal surfaces or wings must be designed for their maximum load in combination with loads induced by the fins or winglets and moments or forces exerted on the horizontal surfaces or wings by the fins or winglets. - (b) If outboard fins or winglets extend above and below the horizontal surface, the critical vertical surface loading (the load per unit area as determined under §§ 23.441 and 23.443) must be applied to— - (1) The part of the vertical surfaces above the horizontal surface with 80 percent of that loading applied to the part below the horizontal surface; and - (2) The part of the vertical surfaces below the horizontal surface with 80 percent of that loading applied to the part above the horizontal surface. - (c) The end plate effects of outboard fins or winglets must be taken into account in applying the yawing conditions of §§ 23.441 and 23.443 to the vertical surfaces in paragraph (b) of this section. - (d) When rational methods are used for computing loads, the maneuvering loads of §23.441 on the vertical surfaces and the one-g horizontal surface load, including induced loads on the horizontal surface and moments or forces exerted on the horizontal surfaces by the vertical surfaces, must be applied simultaneously for the structural loading condition. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–14, 38 FR 31821, Nov. 19, 1973; Amdt. 23–42, 56 FR 353, Jan. 3, 1991] AILERONS AND SPECIAL DEVICES #### § 23.455 Ailerons. - (a) The ailerons must be designed for the loads to which they are subjected— - (1) In the neutral position during symmetrical flight conditions; and - (2) By the following deflections (except as limited by pilot effort), during unsymmetrical flight conditions: - (i) Sudden maximum displacement of the aileron control at V_A . Suitable allowance may be made for control system deflections. - (ii) Sufficient deflection at V_{C} , where V_{C} is more than V_{A} , to produce a rate of roll not less than obtained in paragraph (a)(2)(i) of this section. - (iii) Sufficient deflection at V_D to produce a rate of roll not less than one-third of that obtained in paragraph (a)(2)(i) of this section. - (b) [Reserved] [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13090, Aug. 13, 1969; Amdt. 23–42, 56 FR 353, Jan. 3, 1991] #### §23.459 Special devices. The loading for special devices using aerodynamic surfaces (such as slots and spoilers) must be determined from test data. ## GROUND LOADS #### §23.471 General. The limit ground loads specified in this subpart are considered to be external loads and inertia forces that act upon an airplane structure. In each specified ground load condition, the external reactions must be placed in equilibrium with the linear and angular inertia forces in a rational or conservative manner. # § 23.473 Ground load conditions and assumptions. - (a) The ground load requirements of this subpart must be complied with at the design maximum weight except that §§23.479, 23.481, and 23.483 may be complied with at a design landing weight (the highest weight for landing conditions at the maximum descent velocity) allowed under paragraphs (b) and (c) of this section. - (b) The design landing weight may be as low as— - (1) 95 percent of the maximum weight if the minimum fuel capacity is enough for at least one-half hour of operation at maximum continuous power plus a capacity equal to a fuel weight which is the difference between the design - maximum weight and the design landing weight; or - (2) The design maximum weight less the weight of 25 percent of the total fuel capacity. - (c) The design landing weight of a multiengine airplane may be less than that allowed under paragraph (b) of this section if— - (1) The airplane meets the one-engine-inoperative climb requirements of §23.67(b)(1) or (c); and - (2) Compliance is shown with the fuel jettisoning system requirements of § 23.1001. - (d) The selected limit vertical inertia load factor at the center of gravity of the airplane for the ground load conditions prescribed in this subpart may not be less than that which would be obtained when landing with a descent velocity (*V*), in feet per second, equal to 4.4 (W/S)¹/₄, except that this velocity need not be more than 10 feet per second and may not be less than seven feet per second. - (e) Wing lift not exceeding two-thirds of the weight of the airplane may be assumed to exist throughout the landing impact and to act through the center of gravity. The ground reaction load factor may be equal to the inertial load factor minus the ratio of the above assumed wing lift to the airplane weight. - (f) If energy absorption tests are made to determine the limit load factor corresponding to the required limit descent velocities, these tests must be made under §23.723(a). - (g) No inertia load factor used for design purposes may be less than 2.67, nor may the limit ground reaction load factor be less than 2.0 at design maximum weight, unless these lower values will not be exceeded in taxiing at speeds up to takeoff speed over terrain as rough as that expected in service. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13090, Aug. 13, 1969; Amdt. 23–28, 47 FR 13315, Mar. 29, 1982; Amdt. 23–45, 58 FR 42160, Aug. 6, 1993; Amdt. 23–48, 61 FR 5147, Feb. 9, 1996] ## §23.477 Landing gear arrangement. Sections 23.479 through 23.483, or the conditions in appendix C, apply to airplanes with conventional arrangements